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Abstract

This paper presents a new technique to restore 2D/3D deformed shapes by minimization of the misfit between measured and theoretical

reverse displacement gradients. Owing to its relatively direct and objective nature, the procedure ensures continuity of displacement across

the boundaries between abutting elements. The procedure also minimizes the additional distortion of the elements that results from the

compatibility of retro-deformation between abutting elements. We apply the technique to the Mesozoic Fangshan granodioritic pluton (FGP)

in western Beijing, central North China. Based upon the measured strain of deformed enclaves, about 78% area of the present central zone

can be restored by retro-deformation of the marginal and transitional zones. As a result of the emplacement of the central zone, deformation

also occurred in both the outer zones and the wall rocks, predominantly by ductile flow. The associated deformation in the outer zones, with

or without the involvement of the wall rocks, created space for the emplacement of the central zone. In addition, vertical expansion was

effective in creating space for subsequent emplacement, producing approximately one third of the volume created by later expansion. Thus,

ballooning is a viable mechanism for emplacement of the FGP.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Restoration of deformed shapes is fundamental to

balancing cross-sections (Hossack, 1978; Woodward et al.,

1986), and allows us to gain insight into the deformation

field in which geological structures formed (Rouby et al.,

2000). The lack of constraints, which are rather difficult to

determine in the field, often gives rise to the possibility of a

variety of solutions. Instead of more complex and

sophisticated kinematic techniques, nearly all the tech-

niques of retro-deformation presented till now are based

upon finite strain analysis (Schwerdtner, 1977; Oertel and

Ernst, 1978; Cobbold, 1979; Cobbold and Percevault, 1983;

Woodward et al., 1986; Schultz-Ela, 1988; Schultz-Ela and

Hudleston, 1991; Howard, 1993; Rouby et al., 2000; Lamb,

2001). They fall into two categories, discontinuous and

continuous restoration.

Discontinuous restoration is referred to as the finite

element approach (Oertel and Ernst, 1978; Cobbold, 1979;

Cobbold and Percevault, 1983; Woodward et al., 1986;

Schultz-Ela, 1988; Schultz-Ela and Hudleston, 1991; Rouby

et al., 2000). The deformed region is discretized into a series

of triangular or rectangle elements in plane problems, in

which homogeneous deformation is assumed. There are two

steps in the procedure, non-rotational unstraining of each

element and subsequent fitting of abutting boundaries. The

fitting step is the key to the approach. Continuous

restoration, however, includes Howard’s (1993) method of

displacement analysis for restoring cross-sections, and

Lamb’s (2001) finite element approach for 2D deformed

regions. Retro-deformation displacement functions are

directly constructed by determining retro-deformational
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constants that relate undeformed states to present deformed

states.

Although continuous in nature, Ismail-Zadeh et al.’s

(2001) dynamic restoration is quite different from Howard’s

(1993) and Lamb’s (2001) methods. It is a numerical

approach that was designed for restoring profiles across

diapiric salt structures through solving an inverse problem

of the gravitational instability. The technique of Ismail-Za-

deh et al. (2001) has a wide range of applicability, if the

rocks can be approximated as continuously deformed. It is

unable to incorporate discontinuous deformation such as

faulting that is ubiquitous in the upper crust.

In general, both discontinuous restoration and continuous

restoration have advantages and disadvantages. Discontinu-

ous restoration is theoretically simple but difficult to write as

a computer program. Since destraining and fitting are two

separate steps, the restored shape of the deformed rocks is

always dependent upon the fitting strategy as well as the

scanning scheme for fitting unstrained blocks. Different

fitting strategies on the minimization of gaps and/or

overlaps between abutting elements lead to differences

between different restored shapes. Further deformation of

the unstrained elements is often necessary to fit their

abutting boundaries. In the elements especially with a large

variation of measured strain, gaps and/or overlaps between

the neighboring unstrained elements often remain after

restoration.

Continuous restoration is somewhat complicated in

theory, which is perhaps the reason that a majority of

existing techniques pertain to the discontinuous restoration

category. However, it is fairly objective and easy to

program. Both the compatibility and continuity of retro-

deformation across the abutting boundaries are satisfied

using this approach at the cost of homogenous deformation

and of volume conservation in individual elements.

Distinctive distortion required in restoring some elements

is often far beyond the measured strain data (see the middle

elements in Figs. 5 and 13 in Howard’s (1993) paper for

comparison). In Howard’s (1993) method, the scheme of

integration has some impact on the shapes of restored cross-

sections.

We present a new technique for continuous restoration of

2D/3D deformed shapes by optimizing the misfit between

theoretical and observed reverse displacement gradients.

The method has broad applicability to the restoration of

deformed objects. The finite element method is adopted to

establish the theoretical reverse displacement gradient,

whereas the observed displacement gradient is partly

determined by the strain estimates. Variables such as

rotational angles and reverse displacements are solved

through iteration. Although somewhat similar to the method

of Lamb (2001), our technique is distinctively based upon

construction of the reverse displacement gradient by solving

over-determined equations.

In order to show the validity of the technique, we apply it

to the Mesozoic Fangshan granodioritic pluton in western

Beijing, central North China. Based upon the measured

strain of deformed enclaves, the result shows that 78% area

of the present central zone can be accounted for by retro-

deformation of the marginal and transitional zones. The

emplacement of the central zone was forceful because the

inflation involved not only the outer zones but the wall rock

as well. This suggests that a ballooning mechanism would

be valid for emplacement of the FGP.

2. New technique

2.1. Reverse displacement gradient

In the Cartesian system a material point P0 with a

coordinate (x0, y0, z0) in the deformed state is transformed

by retro-deformation into a new point P1 with a coordinate

(x1, y1, z1) in the undeformed state. The reverse displace-

ment (U, V, W), or the increment between P0 and P1 relative

to a fixed reference frame in the deformed state, is expressed

by:

U ¼ x1 2 x0 V ¼ y1 2 y0 W ¼ z1 2 z0 ð1Þ

In fact, a frequent aim of restoration techniques for

deformed shapes is to find the solution of the displacement

field or the reverse displacement field from measured strain

data. The reverse displacement gradient is the partial

differentiation of the reverse displacement, also called

theoretical reverse displacement gradient T. It is defined as:

T ¼ tij

h i
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Suppose a continuously deformed region of interest is

discretized into a number of M k-node elements. The sizes

of the elements are dependent upon the variation of

measured strain. In the finite element analysis, the

displacement of any point within an individual element

can be interpolated from those at nodes (Zienkiewicz,

1977). Thus we have:

U ¼
Xk

i¼1

NiUi V ¼
Xk

i¼1

NiVi W ¼
Xk

i¼1

NiWi ð3Þ

where Ui, Vi and Wi (i ¼ 1, 2,..., k) are displacements at the

ith local node along the X-, Y- and Z-axes, and Ni (i ¼ 1,

2,..., k) is the shape function at the point P0 (see Appendix B

for the definition of the local function).

Y. Shan et al. / Journal of Structural Geology 26 (2004) 71–8572



Hence the reverse displacement gradient may be written

in another way:

T ¼ tij

h i
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Homogeneity of deformation in an individual element is

assumed, as in many restoration techniques. In order to

satisfy this assumption, we select a linear local function and

choose the 4-node tetrahedron element in 3D cases (k ¼ 4)

or the 3-node triangular element in 2D cases (k ¼ 3). For the

latter element, the linear local function is defined in

Appendix B.

Strain data recorded in deformed rocks are first used to

estimate the theoretical reverse displacement gradient. It

includes the axial ratio of strain, the orientation of the

principal strains, and the volume loss or gain. Rotation

angle, the only unresolved parameter, is kept as an unknown

variable in the gradient, and will be solved for during the

restoration. Constraints are introduced, in order to obtain

these unknown variables through solving for the reverse

displacement field. We will discuss these constraints in the

next section. Since evidence for volume loss or gain in

deformed rocks is rather difficult to obtain, it will be

neglected here. Furthermore, for simplicity we consider 2D

cases that are familiar to most geologists to show the

feasibility of the technique developed in the paper.

However, there is no difficulty in the application of our

technique to 3D cases where 3D strain estimates are

available. Some 3D deformed rocks can be reduced to 2D

cases if the strain of the deformed bodies possesses some

common feature, such as a constant principal direction

normal to the section of interest. These reduced cases,

similar to plane problems in elasticity, are still 3D in nature

because the volume conservation assumption still holds. In

terms of the known variables (strain data–axial ratio of

strain and orientation of the principal strains) and the

unknown variables (rotational angle) in an element, the

components of the calculated reverse displacement gradient

C in 2D, or [cij ]2£2, are given in Appendix C:

c11 ¼ ðt1cos2uþ t2sin2uÞcosc2 ðt1 2 t2Þsinucosusinc2 1

c12 ¼ ðt1cos2uþ t2sin2uÞsincþ ðt1 2 t2Þsinucosucosc

c21 ¼ ðt1 2 t2Þsinucosucosc2 ðt1sin2uþ t2cos2uÞsinc

c22 ¼ ðt1 2 t2Þsinucosusincþ ðt1sin2uþ t2cos2uÞcosc2 1

ð5Þ

where u is the orientation of the greatest principal strain, t1
and t2 are the half lengths of the greatest and the least

principal strains, and c is the rotational angle of the element.

2.2. Objective function

By combining formulae (4) and (5), we have four

nonlinear equations that describe the reverse displacement

field in a 3-node triangular element. They are:

tijðU;VÞ ¼ cijðcÞ; i; j ¼ 1; 2 ð6Þ

There are seven unknown variables in the above

equations, including the displacements (Ui, Vi) (i ¼ 1, 2,

3) and rotational angle c. For an extreme case with one

single element, at least three of them should be specified in

order to obtain a definite solution.

Let L stand for the total number of nodes and M for the

total number of elements discretizing the study region.

There are 4M equations, the number of unknown variables

in which is 2L þ M. The number of equations exceeds that

of unknown variables when many elements are included.

There is no specific solution of the overdetermined

equations since the nodes and the elements are fully free

in 2D space. If they have a solution of (U, V, c), then

(U þ DU, V þ DV, c þ Dc) is also their solution, where

(DU, DV) is any kind of translation of the elements and Dc

is any rotation of the elements. Therefore, before solving

these overdetermined equations, we need to add necessary

constraints to them. The constraints are specific to at least

three variables in the equations. Even so, the number of

unknown variables is still less than or equal to that of

equations. There are many ways to choose and assign the

three variables, depending upon the characteristics of

deformational structures of interest. A common way, used

below, is to let the displacement at one node and the

rotational angle of one element be zero. Although different

specifications may result in differing reverse displacement

fields, the reverse displacement gradient obtained is always

the same.

Let us define the objective function F as the sum of the

squares of the difference betweens the components of

theoretical and measured reverse displacement gradients,

given in formulae (4) and (5). Thus the problem of the

nonlinear equations turns out to be an optimization problem.

It is:

min:F ¼
XM
l¼1

X2

i¼1

X2

j¼1

ðcijlðUðlÞ;VðlÞÞ2 tijlcðlÞÞ
2 ð7Þ

Although there are a variety of algorithms to solve the

optimization problem (e.g. Chen, 1996), we will develop a

new strategy on the solution. If rotational angles, c, are

known, the optimum displacements (U p, V p) are obtained
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by solving the following equations:

›F

›UðlÞ
c




 ¼ 0
›F

›VðlÞ
c




 ¼ 0 l ¼ 1; 2;…;M ð8Þ

Since the above equations are explicitly linear and

closed, they can be solved by some direct algorithms, such

as the Gauss elimination method.

On the other hand, if the displacement (U, V) is known,

the optimum rotational angles c p are obtained by solving

the following equation:

›F

›cðlÞ
ðU;VÞ




 ¼ 0 l ¼ 1; 2;…;M ð9Þ

The routine ways to solve these nonlinear equations are

numerical and time-intensive (e.g. Yuan et al., 1992).

However, if cos(c(l)) and sin(c(l)) are considered as two

independent variables, rather than c(l), we may have pairs

of linear equations as follows:

›F

›ðcoscðlÞÞ
ðU;VÞ




 ¼ 0
›F

›ðsincðlÞÞ
ðU;VÞ




 ¼ 0

l ¼ 1; 2;…;M

ð10Þ

Once Eq. (10) is solved, some adjustment to the pairs is

required in order to guarantee that they are always on the

unit circle.

By solving Eqs. (8) and (10) iteratively, the optimal

displacements at nodes and rotational angles of the elements

are obtained, for a certain resolution. For plane problems,

over-determination of the nonlinear equations is most likely

to introduce an area increase or loss in each element during

the retro-deformation. Area conservation in an individual

element should be held to a minimal degree at the cost of

continuity of retro-deformation between abutting elements.

2.3. Procedure

The procedure to apply this method to a geological

problem is:

1. Discretize the deformed region into a series of 4-node

tetrahedron elements in 3D cases or 3-node triangular

elements in 2D cases. The number of elements depends

on the variation of measured strain.

2. Choose the stationary node and the element with no

rotation in the retro-deformation, based on the charac-

teristics of deformational structures of interest.

3. Determine the strain in an individual element through

interpolation of the measured strain data.

4. Let i ¼ 0 and rotational angles c (0) ¼ 0.

5. Solve Eq. (8) for the displacements (U (i ), V (i )) with the

given rotational angles c (i ).

6. Solve Eq. (10) for rotational angles c (i þ1) with the given

displacements (U (i ), V (i )).

7. Compare the displacements at the ith iteration with

those at the i 2 1th iteration. If their difference is

unacceptable, let i ¼ i þ 1 and return to step 5.

Otherwise stop the iteration and output the result.

Our calculation below has indicated that the algorithm is

very effective in the first few iterations and that convergence

becomes slower afterwards (Fig. 1).

3. Case study

3.1. Geology

The example we selected to test using the above

technique is from the Fangshan granodioritic pluton

(FGP), west of Beijing, central North China (Fig. 2). It is

well studied from a geological, geochemical and geochro-

nological perspective (Chen and Zhang, 1983; Liu and Wu,

1987; Ma, 1988; Hebei Bureau of Geology, 1989; Zhang,

1990; Zhang and Li, 1990). The pluton is slightly elliptical

in map view with a mean diameter of 7 km, the long axis

approximately trending toward the NW–SE direction. Mid-

Proterozoic–Permian platformal carbonate and clastic

sediments, as well as Lower Jurassic lacustrine and fluvial

sediments, were intruded by the FGP. In general, a sharp

contact exists between the FGP and its wall rocks. Strata

were to some extent deflected in the vicinity of the FGP and

thinned with respect to regional stratigraphic units. This

attenuation reached a maximum near the western margin

where the almost vertically dipping Paleozoic formations

were in concordant contact with the FGP. Regionally, these

strata were folded, thrusted and subjected to regional low-

grade metamorphism (refined to the southern part of the

region) during the late Jurassic to early Cretaceous, when

Mesozoic tectono-magmatism culminated in North China

Platform (Yih, 1920; Wang, 1951; Bao et al., 1983; Hebei

Bureau of Geology, 1989; Shan et al., 1989, 1990; Davis

et al., 2001).

Emplacement of the FGP occurred at approximately

2–3 km depth in the upper crust (Shan and Li, 1998).

The FGP has a K–Ar whole rock age of ca. 132 Ma

(Hebei Bureau of Geology, 1989). Isotopic ages on

different minerals with varying blocking temperatures

reveal its relatively long cooling history of several tens of

millions of years (Chen and Zhang, 1983), suggesting the

presence of an abnormally hot state in the wall rocks

associated with contemporary low-grade regional meta-

morphism (Shan and Li, 1998). Furthermore, mass and

heat transfer from the intrusive body caused an aureole of

contact metamorphism in the wall rocks around the FGP,

superimposed on regionally low-grade metamorphosed

rocks (Liu and Wu, 1987).

Based upon petrology and contact relationships, three
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main petrographic zones of the FGP are recognized: the

marginal, transitional and central zones (Fig. 2b; Hebei

Bureau of Geology, 1989). They consist of fine-grained

quartz diorite, middle-grained quartz diorite and coarse-

grained granodiorite, respectively. These have the shape of

concentric rims representing successive magma pulses.

Planar flow structures, which are alignments of planar and

linear minerals in rocks and of elongated enclaves and

xenoliths, are well developed in the marginal and transi-

tional zones. They are approximately parallel to the outer

rims of the zones, and commonly have a high dip angle of

more than 708, except for in the southeastern part where the

dip ranges between 308 and 508 (Zhang, 1990; Zhang and Li,

1990). Linear flow structures are also frequently observed in

these zones. In the western margin, instead of flow

structures, there is the gneissic foliation and an overprint

of small-scale ductile shear zones (Li, 1990). The FGP

contains multiple generations of a large number of syn- and

post-solidification fractures in concentric, radial and other

patterns.

Forceful emplacement of the FGP is ascertained by

numerous geological observations in outcrop, some of

which have been described above. Based on these data—

sharp contacts, stratigraphically-thinned wallrocks, concor-

dant foliations in the wallrock and outer edge of the

pluton—several geologists have interpreted emplacement of

the FGP as resulting from a ballooning mechanism (e.g. Ma,

1988; Zhang, 1990; Zhang and Li, 1990). However, a

majority of synchronous granite plutons in the North China

Platform do not possess these characteristics diagnostic of

forceful emplacement (Fig. 2a). These plutons were also

emplaced between the middle Jurassic and the early

Cretaceous, during a time of orogenesis in the eastern part

of the North China Platform (Hebei Bureau of Geology,

1989; Davis et al., 2001).

3.2. Strain data

Enclaves of mostly dark diorite and to a lesser extent

feldspar-rich amphibolite and hornblende-rich diopsidite

and xenoliths of metamorphosed sandstone are frequently

observed in the FGP. They are typically elongated and

parallel to the flow or schist structures. Only the mafic

enclaves were chosen to measure strain because of their

abundance and easy recognition in outcrop. Strain data that

we will use below are adopted from Zhang (1990) and

shown in Fig. 3a. The axial ratio of strain is about one in the

center where macroscopic plastic deformation is hardly

observed in enclaves of equant shape. Strain intensity

increases towards the margins and reaches a maximum in

the western part of the FGP where the flow structures are

replaced by intensive foliation. Strain intensity increases

less in the southeastern marginal parts. The Flinn par-

ameters calculated from the measured strain data are almost

equal to zero, indicating the presence of an oblate strain

state (Zhang and Li, 1990). Field observation of different

kinds of strain markers reveals that the maximum or the

intermediate principal strain in the outer zones tends to be

parallel to the rims, and that the minimum principal strain is

approximately horizontal.

Considering the approximately equant shape of enclaves

in the less deformed rocks, it is clear that elongation of the

enclaves in the FGP took place during the solidification and

records the syn-emplacement deformation in rocks. Since

 

Fig. 1. The iteration number vs. the minimum of the objective function (solid line with diamonds) and the iteration number vs. the maximum difference in the

displacement at nodes between two successive iterations (dashed line with blank circles).
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we have little knowledge about the difference in viscosity

between the enclaves and the subsolidus matrix, the

measured strain data may not perfectly record the average

strain. But we have to assume that the strain recorded in

enclaves is representative of the average strain in rocks,

upon which our restoration of the outer zones is based.

3.3. Restoration

Since the marginal and transitional zones are only one

quarter of the map view exposure of the FGP and since there

are limited measured strain data in these zones, we combine

the two outer zones (Fig. 2b) into a new zone (Fig. 3a). The

new zone is discretized into a number of 93 3-node

triangular element domains (Fig. 3b), the size of which is

dependent upon the variation of measured strain. Nearly

vertical flow structures and foliations as well as measured

strain data indicate an oblate strain state or t01 < t02 . t03
where t01, t02 and t03 are the half lengths of the maximum, the

intermediate and the minimum principal strains, and that the

minimum principal strain lies approximately in horizon.

Hence we can reduce the 3D restoration of the new zone to a

2D restoration in the horizontal plane, although it is out of

the plane deformation. In this plane case, the half lengths of

the greatest and the least strains at any point, or t1 and t2,

are directly calculated from the strain data at that point

(Fig. 3a):

t1 ¼
ffiffiffiffi
R23

p
; t2 ¼

1ffiffi
R3

p ð11Þ

where R is the axial ratio of strain measured on the

horizontal surface, equivalent to t1/t2.

The average strain in an individual element is obtained in

the following two steps (Fig. 3c). First, the greatest principal

direction in each element is determined by finding out the

Fig. 2. Simplified geological maps of the study area, west of Beijing, northern China (modified from Hebei Bureau of Geology, 1989).
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tangential direction along the center of the element on the

circle having the same center as the FGP has. They are

approximately parallel to each other because of concentric

emplacement of the FGP. Second, the axial ratio of strain in

each element is interpolated from the measured data in Fig.

3a. The thin-plate spline method (Duchon, 1975) is adopted

for construction of the interpolation function, by which

strain ratio in each domain is interpolated from the

measured strain data (Fig. 3a). This method is valid for a

particularly small number of measured data.

Our object is to apply the technique to determine whether

the volume space, or the area within the inner rim of the new

zone containing the central zone can be explained by retro-

deforming or not. Results of the application of our technique

are shown in Table 1 and Figs. 1, 4 and 5. In Fig. 1, the

algorithm is very effective in the first iterations but becomes

slower to converge afterwards. It usually takes a large

number of iterations to reach a given resolution. A 10-m-

resolution is set up in the restoration, for which no more than

100 iterations are enough to guarantee convergence.

Fig. 3. (a) Strain data at some localities in the marginal and transitional zones (adopted from Zhang, 1990), assuming equi-dimensional shape of the enclaves in

the undeformed state. At each locality, the strain datum represents the geometrical average of more than 30 strain data from flattened mafic enclaves measured

in the approximately horizontal exposures. Measured strain generally varies a little from mafic enclaves, but greatly from enclaves having other rock type or

xenoliths. (b) Discretization of the outer zones where the node circled is stationary and the elements with ‘ þ ’ marks have zero rotation during retro-

deformation. The choice of the node and the element is based upon the symmetrical configuration of the FGP. (c) Strains in elements interpolated from those

measured strain data in (a). The greatest principal strain has a constant length whereas the least principal strain varies in length according to the axial ratio of

strain of the element.

Y. Shan et al. / Journal of Structural Geology 26 (2004) 71–85 77



Although more iterations will increase the precision of the

displacement solution at nodes, it is not worth the cost of

extended running time. The restored shape does not appear

to vary distinctly with the number of iterations (no less than

25; Fig. 4).

The restored zone is approximately elliptical in shape,

the long axis exceeding the mean diameter of the FGP (Fig.

5a). This is an unrealistic shape, which we will discuss

below. The area within the outer rim of the restored zone has

an area of 70.1 km2 (,27% of the original area of the FGP),

whereas the area within the inner rim has an area 10.8 km2

(,78% of the original area of the present inner zone). It is

obvious that retro-deformation has produced an intense

shrinkage towards the center of the FGP (Fig. 5a), especially

on the inner rim. However, there still remains an area within

the restored inner rim that cannot be restored in this way and

needs another explanation. Since the restoration is con-

cerned only with flow/plastic deformation recorded by the

elongated enclaves in the FGP, the fracturing process must

have absorbed some part of the radial inflation associated

with the emplacement of the central zone. It is difficult to

recognize in outcrop syn- and post-solidification fractures in

the outer zones formed during the emplacement of the inner

zone, but they appear to be comparatively small. Further-

more, we have not taken into account the misfit between the

restored and the real shapes caused by a variety of factors

that we discuss below.

Restorable strain is referred to as some part of

interpolated strain in an individual element that can be

recovered in retro-deformation. It is generally close to the

strain interpolated in each element (compare Fig. 5b with

Fig. 3c). The rotational angle is rather small in most

elements except for those where the interpolated strain

varies distinctly. Large rotation angles, for instance, occur

in the northwestern part and in the southern part (Fig. 5c).

3.4. Implications

From the reduced 2D restoration, a scenario of the

emplacement of the central zone of the FGP is envisioned.

Before its emplacement, the intruded magma at depth was

probably circular or slightly elliptical in plan view as the

FGP is now, comprising ca. 75% of the present FGP. Apart

from the western margin, solid-state plastic deformation in

response to the later inflation is seldom observed in

magmatic rocks of the outer zones (Ma, 1988; Zhang and

Li, 1990). Therefore, solidification of the intruded magma

must have continued until the emplacement of the central

zone. During the emplacement, the intruding magma

inflated the surrounding rocks in a radial pattern with

additional intensification of strain toward the western

margin. Both subsolidus rocks in the outer zones and the

wall rocks around the FGP underwent intense contraction to

provide room for its emplacement. In the outer zones, most

of the inflation was absorbed in the form of flow/plastic

deformation, because a majority of the area within the inner

rim can be restored.

Depending on the involvement of the wall rocks, two

end-member models of flow/plastic deformation in the outer

zones are discriminated. The deformation in the first

model is confined to the outer zones whereas in the

second model deformation occurred in both the wall

rocks and the outer zone. These two end members are

characterized by a difference in rock stiffness between the

wall rocks and rocks in the outer zones. The first model

requires less forceful emplacement than the latter. Their

roles in creating room can be roughly determined from

the result of the above-mentioned restoration (Fig. 5;

Table 1). The result of the second model is characterized

by a difference in the area within the outer rim between

the present state and the restored state. The area within

the outer zone presently occupies 25.9 km2, nearly half of the

area within the inner rim. Therefore, either model may be

applicable, but both require forceful emplacement of the

FGP.

In addition, vertical expansion had played an important

role in creating space for the subsequent emplacement,

because of the oblate strain state in the outer zones. This

Table 1

Shrinkage of the restored zone after different number of iterations

Iterations F Dmax (km) The area within the outer rim The area within the inner rim

Deformed

(km2)

Restored

(km2)

Error proportion Deformed

(km2)

Restored

(km2)

Error

proportion

1 612.00 96.01 86.60 10% 49.07 10.94 78%

25 12.10 0.0206 74.48 22% 7.81 84%

50 11.21 0.0144 72.42 25% 8.63 82%

75 10.76 0.0108 71.01 26% 9.78 80%

100 10.54 0.0074 70.11 27% 10.81 78%

Notes: F is the minimum of the objective function and Dmax is the maximum difference in the displacements at nodes between two successive iterations.

The error proportion is defined as: (Wi 2 Wf)/Wf £ 100% where Wi and Wf are observed values of one variable in the deformed and the restored states,

respectively.
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affect can be evaluated by the above restoration. The area

within the outer zones is 46.94 km2 in the present state and

59.3 km2 in the restored state. Since there is no area

loss/gain in the retro-deformation, the difference of

12.26 km2 must be accounted for by vertical expansion.

The value is relatively low compared with the restorable

area within the inner rim in the present state, 38.16 km2. It

seems that vertical expansion is less effective in creating

Fig. 4. The present deformed shape (dashed lines) vs. the restored (dark lines) of the new zone of the FGP after different iterations: 0 (a), 25 (b), 50 (c), 75 (d)

and 100 (e).
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space than lateral expansion, the former only producing near

one third of the area created by the latter.

4. Discussion and conclusion

4.1. Methodology

A new technique is presented in this paper to restore

deformed shapes in a continuous way by the minimization

of the difference between measured and theoretical reverse

displacement gradients. It is in the category of continuous

restoration and different from existing restoration tech-

niques (Oertel and Ernst, 1978; Cobbold, 1979; Cobbold

and Percevault, 1983; Woodward et al., 1986; Howard,

1993; Rouby et al., 2000; Lamb, 2001). In spite of

complications due to the use of the finite element concept,

our technique is direct and objective. Through construction

of reverse displacement gradients, the continuity of the

displacement across the boundary between abutting element

domains is ensured. Additional distortion of the elements,

resulting from the incompatibility of interpolated strain

between abutting elements, is kept at a minimum. The

process automatically seeks the optimum reverse displace-

ment gradient at a given resolution. What is more important,

the technique can be slightly modified to cope with

discontinuous deformation, faults for instance, like the

method of Rouby et al. (2000). As shown in another paper

(Shan et al., 2002), an extension of the technique is

applicable to discontinuous deformation. Fault shapes can

be addressed, for instance, by imposing constraints on the

restored cutoff lines along the faults—the nodes on the

Fig. 5. Restoration of the new zone after 100 iterations, the restored shape (black lines) vs. the present deformed shape (dashed lines) (a), restorable strain in

elements (b), and rotational angles in elements (c). The direction of vertical arrows relative to north represents rotational angles, and the length of the arrow is

proportional to the rotational angle. See Fig. 3 for further explanation.
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cutoff line in the hanging wall must be fit into the cutoff line

in the footwall after restoration; and vise versa. That is to

say, if possible in the restored state, the nodes on the cutoff

line in one sidewall are in the cutoff line in the other

sidewall. These constraints are linear and can be directly

added to the above-mentioned over-determined equations

(Shan et al., 2002).

At the cost of compatibility of retro-deformation

between abutting elements, the restorable strain in

elements does not commonly correspond with the

interpolated strain. The interpolated strain may be

incompatible across the boundary between abutting

elements. This will cause misfit of the restored shape

with the real one. The misfit is dependent upon many

possible factors, including size and shape of element

domains, the assumption of homogeneous deformation in

elements, reduction in dimension of deformed shapes, the

interpolation function of measured strain data, errors in

the measurement of strain, and so forth. The latter three

factors are common and their discussion is beyond of the

scope of this paper. In nature, homogeneous deformation

in the triangular domains is generally inconsistent with

the real deformation. The common way to alleviate

deformational heterogeneity is adjustment of the mesh

size according to the variation of measured strain. The

larger the variation of measured strain, the smaller the

mesh size. In the above example, we believe that

the discretization is the main factor responsible for the

unrealistic restored shape of the new zone (Figs. 4 and

5). Optimization of the mesh through minimization of

incompatibility of interpolated strain between abutting

elements is a subject for further study.

4.2. Emplacement mechanism

How pluton emplacement is accommodated by the

interaction among regional deformation, deformation of

wall rocks and the accenting/stopping magma is an

intriguing issue. In general, any deformation can be

described by a combination of pure strain, rotation and

translation, and this is a particularly useful way to look at

pluton emplacement (Tikoff et al., 1999). Among the three

deformation components, translation and rotation are not

recorded by strain markers and quantification of these

requires palinspastic restoration. The method presented in

this paper provides a way of quantifying these parameters.

Since it utilizes a minimization technique, estimates for

these parameters are conservative.

Our technique was applied to the Fangshan granodioritic

pluton (FGP), in central North China. By using the current

outcrop shape of the pluton and the strain recorded in the

wallrock, the method solves for displacements. One

difficulty of our approach is that the strain estimates for

the enclaves were not calibrated in terms of a viscosity

contrast between the deformed enclaves and the matrix.

Thus, our restoration is only strictly applicable if the

enclaves are good markers of finite strain.

Our modeling indicated that about 78% area of the

present central zone could be restored by retro-deformation

of the marginal and transitional zones. Much of the space for

emplacement of the inner zone was apparently created

through plastically expanding the outer zones and wallrock.

Deformation, as a result of the emplacement of the central

zone, occurs by flow/plastic deformation in the marginal

zone, transitional zone, and wallrocks. A large part of this

retro-deformation also involved translation of the outer zone

and wallrocks. Rotation was generally not large, but reached

a maximum on the north and south sides of the pluton. These

conclusions are similar to those of Guglielmo (1994),

although his forward modeling is distinctly different from

the approach outlined in this manuscript. In addition, two

end-member deformation models are considered, which

either include or exclude strain in the wallrocks. Both

models have similar results. In addition to lateral expansion,

vertical expansion also produced near one third of the

volume created by later intrusion.

Based upon the restoration, we argue that a ballooning

mechanism best describes the forceful emplacement of the

FGP. Similar to other studies of ballooning plutons—such

as the Cannibal Greek pluton in Australia (Davis, 1993), the

Papoose Flat pluton in California (de Saint Blanquet et al.,

2001) and the Mono Greek granite in the Sierra Nevada

(Tikoff et al., 1999)—both internal strain and translation of

the surrounding material were inferred to occur during

pluton emplacement to make space for the intruding pluton.

The thinning of the stratigraphy around the FGP is similar to

that of the Papoose Flat pluton in California (de Saint

Blanquet et al., 2001). The forceful emplacement of the FGP

must have involved forces large enough to push the

wallrocks aside. These conditions are probably satisfied in

the region, as the FGP was emplaced during low-grade

regional metamorphism.
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Appendix A

List of symbols and their definitions

Appendix B. Definition of the local function

As stated in the text, we assume homogeneity of

deformation in each element. This corresponds with the

construction of a linear local function for interpolation

of the displacement at any point of the element from

the displacements at nodes. It is rather easy to write out

the formula of linear local functions in 2D and 3D

cases, but only in the 2D case will be listed below. Let

DABC be a 3-node triangular element (Fig. A1). The

linear local function of any point (x, y) in the element is

defined as (Zienkiewicz, 1977):

Niðx; yÞ ¼
1

2S
ðai þ bix þ ciyÞ;

i ¼ 1; 2; 3

ðA1Þ

where S is the area of the study triangular, and

coefficients ai, bi and ci are constants. They are the

functions of the coordinates at the nodes:

S ¼ 1
2
ðx1y2 2 x2y1 þ x3y1 2 x1y3 þ x2y3 2 x3y2Þ ðA2Þ

a1 ¼ x2y3 2 x3y2

b1 ¼ y2 2 y3

c1 ¼ x3 2 x2

a2 ¼ x3y1 2 x1y3

b2 ¼ y3 2 y1

c2 ¼ x1 2 x3

a3 ¼ x1y2 2 x2y1

b3 ¼ y1 2 y2

c3 ¼ x2 2 x1

Symbols Definitions Comment

(x0, y0, z0) The Cartesian coordinate of a material point P0 in the deformed state See Eq. (1)

(x1, y1, z1) The Cartesian coordinate of a material point P1 in the undeformed state The point P0 becomes P1 after retro-deformation;

see Eq. (1)

(xi, yi) The Cartesian coordinates at nodes of a 2D element i ¼ 1, 2, 3; see Appendix B

(U, V, W) (1) The displacement at the point P0, and (2) the displacements at all nodes See Eqs. (1)–(4) and (6)–(10)

(DU, DV) An incremental translation of the elements

(U (i ), V (i )) The displacements at nodes after a number of i iterations

(Ui, Vi, Wi) The displacement at the ith local node of an individual element See Eqs. (3) and (4)

(U(l), V(l), W(l)) The displacement at the nodes of the lth element See Eqs. (7) and (8)

c or c(l) Rotational angle of an individual element or of the lth element in 2D See Eqs (6), (7), (9) and Appendix C

c (i ) The rotational angles at the ith iteration in 2D

Dc Any rotation of the elements

k The number of nodes of an individual element It is three for the 3-node triangular element

M The number of total elements in the deformed region

L The number of total nodes in the deformed region

T Theoretical reverse displacement gradient A 3 £ 3 or 2 £ 2 tensor, see Eq. (4)

tij or tijl An element of the matrix T for an individual element or for the lth element See Eqs. (4) and (7)

C Observed reverse displacement gradient A 3 £ 3 or 2 £ 2 tensor, see Eq. (5)

cij or cijl An element of the matrix C for an individual element or for the lth element See Eqs. (5) and (7)

A The transformation unstraining a deformed block See Appendix C

aij An element of the matrix A See Appendix C

t01, t02 and t03 The half lengths of the maximum, the intermediate and the minimum

principal strains

t1 and t2 The half lengths of the greatest and the least strains in 2D See Eqs. (5) and (11) and Appendix C

u The direction of the greatest strain in 2D See Eq. (5) and Appendix C

R Axial ratio of strain in a 2D block See Eq. (11) and Appendix C

Ni The shape function See Eq. (4) and Appendix B

ai, bi and ci The constants of the Ni for a triangular element See Appendix B

S The area of a triangular element See Appendix B

F The objective function See Eq. (7) and Table 1

Dmax The maximum difference in calculated displacements at nodes between two

successive iterations

See Table 1

(Xt, Yt) Translation of a block in 2D See Appendix C
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Appendix C. Measured reverse displacement gradient

Suppose the deformation in a 2D block is homo-

geneous. Its reverse displacement field is composed of

translation, rotation and deformation. Let (Xt, Yt) stand

for the translation, u for the orientation of the maximum

principal strain, t1 and t2 for the half lengths of the

maximum and the minimum principal strains, and C

rotational angle (Fig. A2). Both t1 and t2 are calculated

from the known axial ratio of strain (R) and the known

strain state in the block. For example in pure-shear

plane deformation, they are:

t1 ¼
ffiffi
R

p
; t2 ¼

1ffiffi
R

p ðA3Þ

Restoration of the deformed block is sequentially

made by exerting on it the translation of (2Xt, 2Yt),

rotation with an angle of 2C and deformation with (t1,

t2, p/2 þ u). This operation is easily done in terms of a

matrix with each manipulation representing a different

transformation. For the sake of convenience, we assume

that block rotation took place before its deformation,

although the final transformation is often different from

that with rotation after deformation. The reverse

displacement (U, V) of any point (x, y) in the block is:

U

V

" #
¼ 2

x

y

" #
2

Xt

Yt

" #
þ

cosð2cÞ 2sinð2cÞ

sinð2cÞ cosð2cÞ

" #

�

cos
p

2
þ u

� �
sin

p

2
þ u

� �

2sin
p

2
þ u

� �
cos

p

2
þ u

� �
2
6664

3
7775

�
t1 0

0 t2

" #

�

cos
p

2
þ u

� �
2sin

p

2
þ u

� �

sin
p

2
þ u

� �
cos

p

2
þ u

� �
2
6664

3
7775

x

y

" #

¼ 2
x

y

" #
2

Xt

Yt

" #
þ

cosð2cÞ 2sinð2cÞ

sinð2cÞ cosð2cÞ

" #

�
cos2ðuÞt1 þ sin2ðuÞt2 sinðuÞcosðuÞðt1 2 t2Þ

sinðuÞcosðuÞðt1 2 t2Þ sin2ðuÞt1 þ cos2ðuÞt2

" #

�
x

y

" #

ðA4Þ

Let matrix A be:

A ¼
a11 a12

a21 a22

" #

¼
cos2ðuÞt1 þ sin2ðuÞt2 sinðuÞcosðuÞðt1 2 t2Þ

sinðuÞcosðuÞðt1 2 t2Þ sin2ðuÞt1 þ cos2ðuÞt2

" #
ðA5Þ

The matrix A is to unstrain the deformed block

Fig. A1. A diagram of a 3-node triangular element.

Fig. A2. Retro-deformation of the DABC element in the deformed state to

the DA0B0C0 element in the restored state.
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without taking rotation into account and is calculated

from the known strain in the block. Hence we have:

By differentiating the above equations, we obtain the

reverse displacement gradient in the following:
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